ОТЕХНОЛОГИИ

ВОЛОКОННО-ОПТИЧЕСКАЯ СИСТЕМА **ТСО «СОВА»**

О.В. Горбачев, кандидат технических наук

Данная работа посвящена практическому использованию интерференционных явлений в оптических волокнах.

Интерес к изучению интерференционных явлений в оптических волокнах обоснован тем, что пятнистые картины (спекл-структуры), возникающие при когерентном освещении случайно неоднородных объектов и сред, не только снижают качество изображений, но и могут служить носителем полезной информации. Носителем информации выступают спекл-картины, которые легко идентифицируются при высокой чувствительности к внешним воздействиям. Это определило широкое их использование в решении разнообразных научных и технических задач. В настоящее время предложено около десятка различных типов и конструкций волоконно-оптических датчиков давления, но ни одному из них пока нельзя отдать безусловного предпочтения. Это направление продолжает оставаться одним из наиболее интересных приложений когерентных явлений в оптическом волокне, так как позволяет определять параметры вибраций реальных конструкций, определять статистические структуры микронеоднородностей и анализировать нарушения структуры поверхности.

ИССЛЕДОВАНИЕ СПЕКЛ-СТРУКТУР В ОПТИЧЕСКИХ ВОЛОКНАХ

При когерентном освещении случайно-неоднородных объектов, таких как прозрачная среда с флуктуирующим в пространстве показателем преломления

Рис. 1. Спекл-картина на выходе из многомодового оптического волокна

[1, в рассеянном поле формируется спекл-структура, увеличенный фрагмент которой представлен на рис.1.

Рассмотрим условия формирования и некоторые оптические схемы наблюдения спекл-картин, представляющих собой результат интерференции волн от отдельных неоднородностей поверхности объекта. Волны взаимно когерентны, если радиус пространственной когерентности ρ_{e} на поверхности объекта превышает диаметр освещенной области **D**, ρ_{e} >**D**. Это достигается уменьшением углового размера освещающего источника θ , поскольку $\rho_{e} \approx \lambda/\theta$, где $\overline{\lambda}$ - средняя длина волны света. Более того, разность оп

тических путей любой пары элементарных волн δ , приходящих в точку наблюдения **Р**, должна быть меньше длины временной когерентности излучения $l \approx \lambda/\Delta \lambda$, где $\Delta \lambda$ - ширина спектрального интервала излучения.

При выполнении вышеперечисленных условий элементарные волны, рассеянные неоднородностями, складываются по амплитуде - интерферируют, и результирующая амплитуда поля в произвольной точке **Р** определяется с учетом вклада фазовых сдвигов **Δφ**_i и амплитуд **a**_i каждой элементарной волны:

$$U(P) = \sum_{j=1}^{N} a_j \exp(i\Delta \phi_j) = A(P) \exp(i\phi(P))$$

где *N* - полное число этих волн. Поскольку **a**_i и, главное, $\Delta \phi_i$ - случайные величины из-за случайности расположения неоднородностей на поверхности и значений высот или показателя преломления этих неоднородностей, то результирующая амплитуда *A*(*P*), фаза ϕ (P) и интенсивность **I**(P)~|U(P)|² поля будут случайными функциями. Контрастные, ярко выраженные спекл-структуры наблюдаются, когда фазовые сдвиги $\Delta \phi_i$ лежат в интервале 0-2 π радиан. Для этого достаточно, например, чтобы размеры неоднородностей Δh_i были бы сравнимы с λ , поскольку $\Delta \phi_i \approx (2\pi/\lambda) 2\Delta h_i$.

Минимальные размеры спеклов в поперечном сечении поля определяются соотношением $\epsilon_{\text{Lmin}} = \overline{\lambda} z/D$, где z - расстояние от объекта до плоскости наблюдения. Это соотношение легко получить из следующих соображений.

Средние размеры спеклов несколько больше, $\epsilon_{\perp} \approx 3\lambda^{z/D}$. Поправочный коэффициент З можно получить на основе вероятностного пространственночастотного анализа спекл-картины. В случае многомодового волокна Д=50 мкм и $\lambda = 0,83$ мкм получаем коэффициент K=3,7.

Эффективность приема, которую можно определить как отношение мощности участвующей в формировании сигнала регистрации спекла ко всей мощности падающего излучения обусловлена пространственной когерентностью излучения. Пространственную когерентность спекла характеризуют радиусом когерентности: статистически средним радиусом пятен когерентности - площадок на волновом фронте с регулярным изменением фазы. Это ограничивает входную угловую апертуру, что достигается с помощью оптического устройства приема из линзы. Сигнал регистрации можно повысить, увеличив мощность в пятне когерентности и за счет уменьшения размера светового пятна на фотоэлементе.

ТЕХНОЛОГИИ 🔘

Рассмотрим возникновение спекл-структур при распространении когерентного излучения в однородной изотропной стохастичной среде. Проинтегрировав взаимную интенсивность излучения I(R) при гауссовском распределении поля и гауссовой степени когерентности [2] ,получено выражение для мощности регистрации сигнала при согласованных волновых фронтах двух пучков:

Psig ~
$$\frac{M}{(m+1)^2 + 4n(m+1)}$$
 x PPg

где **m** - отношение площадей сечения пучков

- ${\bf n}$ число пятен когерентности в принимаемом
- излучении из торца световода
- Р-мощность излучения
- **Р***g*-мощность гетеродинного излучения

Максимальная эффективность приема достигается при $m = (4n+1)^{12}$. При этом выражение для мощности сигнала имеет вид:

Psig ~ 4 PPg
$$\frac{m-1}{(m+1)n}$$

При **n** $\rightarrow \infty$ как видно, несмотря на то, что мощность сигнала асимптотически приближается к величине мощности одного пятна когерентности, эффективность регистрации падает до нуля.

Оптимальными для приема можно считать условия m = 3, n = 2, к огда мощность сигнала составляет половину от максимально возможной. Таким образом, обнаружена зависимость сигнала от числа пятен на входном зрачке приемного устройства, числа пятен в спеклструктуре и доле мощности излучения пятна когерентности, участвующего в образовании сигнала регистрации. Данные теоретического анализа получили экспериментальное подтверждение того, что использование пространственного фильтра позволяет увеличить сигнал регистрации почти в 4 раза по сравнению с сигналом, полученным в отсутствии его (см. рис. 2,3)

Экспериментально была получена зависимость амплитуды модуляции P сиг. от радиуса **г**пф входного отверстия, который измерялся с помощью сменных диафрагм при двух расстояниях между выходным торцом волокна и входом фотоприемника: Lпф=7 см(а) и 3 см(б). Результаты измерений представлены на рис. 2, из которого видно, что наиболее эффективная работа приемного устройства TCO "Сова" наблюдается при радиусе трубки 0,5 мм и Lпф=7 см.

На рис.3 приведена экспериментальная зависимость эффективности приема сигнала от длины распределенного чувствительного элемента при расстоянии Lпф=7 см между выходным торцом оптического кабеля и входным отверстием фотоприемника. Видно, что анализируя изменения спекл структуры оптического кабеля, можно разработать волоконно-оптическую систему охраны с длиной извещателя от десятков метров до километров. Экспериментальные данные хорошо согласуются с приведенной теоретической кривой, полученной для моделей мягкой диафрагмы и малом угле когерентности при гауссовом распределении поля. Измерение модового поля проводилось методом сканирования распределения интенсивности многомодового оптического излучения с торца волокна [3].

Сравнительный анализ экспериментальных данных изменений спекл-структур, происходящих вследствии апертурных эффектов, параметров оптического волокна, лазера, фотоприемника и внешнего воздействия на РЧЭ, позволили выявить четкую зависимость от характерных внешних воздействий на распределенный волоконно-оптический датчик. Установлена слабая зависимость среднеквадратичной интенсивности и заметная зависимость пространственно-временной флюктуации интенсивности некоторых областей спеклов. Выявлена зависимость от частоты, координат и силы внешнего воздействия (см. рис. 4 где приведены гистограммы распределения интенсивности в зависимости от частоты регистрации значений интенсивности при различных расстояниях между выходным торцом световода и фотоприемником). Как видно, наиболее сильное смещение уровня сигнал/шум наблюдается при 7 см.

Продолжается численное моделирование зависимости углового распределения интенсивности от внешнего воздействия. Исследуется тоновое распределение интенсивности. Установлена передаточную функцию РЧЭ в зависимости от параметров ОВ, лазерного излучения и характера внешнего воздействия при фиксированных параметрах. Разработана и изготовлена, на базе экспериментальных и теоретических данных, уникальная волоконно-оптическая система охраны способная эффективно работать в широком диапазоне температур при длине извещателя от 10 м до 3000 м.

ОТЕХНОЛОГИИ

Рис. 4. Зависимость эффективности приема сигнала Psig от нормированного воздействия (ряд 1-14) на оптический кабель РЧЭ при расстояниях Lпф между выходным торцом оптического волокна и входным отверстием фотоприемника 1, 3, 7, 10 см.

УСТРОЙСТВО И ПРИНЦИП РАБОТЫ ВОЛОКОННО-ОПТИЧЕСКОЙ СИСТЕМЫ ОХРАНЫ ТСО "СОВА"

Упрощенная структурная схема волоконно-оптической системы охраны "СОВА" приведена на рис. 5. Оптический излучатель (ОИ), при помощи устройства ввода (УВ), создает последовательность слабокогерентных оптических импульсов в волоконно-оптическом кабеле. В качестве оптического излучателя используется для малых длин РЧЭ светодиод, для длин более 70 м. - полупроводниковый лазер. Инфракрасное излучение распространяется по сенсорному оптическому кабелю и регистрируется приёмным блоком (БПр), на входе которого установлен пространственный фильтр ($\Pi \Phi$) для эффективного приёма изменения спекл-картины и преобразующий оптический сигнал в электрический. Блок обработки (БО) сравнивает принимаемый сигнал с эталонным, который соответствует невозмущённому состоянию сенсора и детектирует смещения, вибрации или деформации кабеля, выдавая из извещателя сигнал тревоги.

БП - блок питания, БО - блок обработки, ОИ - оптический излучатель, УВ - устройство ввода,

РЧЭ - распределенный чувствительный элемент (сенсорный оптический кабель), ПФ - пространственный фильтр, БПр - Блок приема оптического излучения.

При когерентном освещении деформационных полей в оптическом волокне, формируется спекл-структура, увеличенный фрагмент которой представлен на рис. 1. В качестве сенсора обычно используют многомодовое оптическое волокно "градиентного" типа, содержащее сердцевину и оболочку. Сердцевина волокна имеет более высокий показатель преломления, чем оболочка, поэтому оптическое излучение, отражаясь от границы раздела, концентрируется в центральной части волокна. Диаметр сердцевины волокна обычно составляет от 50 до 100 мкм, диаметр оболочки - 120 - 150 мкм. Защитный слой предохраняет кабель от разрыва и климатических воздействий. При деформациях кабеля изменяются условия внутреннего отражения распространяющегося по сердцевине излучения и в результате частотные, фазовые и геометрические параметры луча на выходе волокна также претерпевают изменения. Чаще всего детектирование осуществляется методом регистрации на выходе волокна "спекл-структуры" [3], представляющей собой нерегулярную систему темных и светлых пятен.

Так как чувствительным элементом системы является оптоволоконный кабель, который в составе извещателя реагирует на движение, вибрацию и деформацию по всей длине, то необходимо осуществить его механический контакт с заграждением или охраняемой поверхностью. Ввиду абсолютной безопасности, оптический кабель может использоваться во взрывоопасной среде. В силу высокой механической прочности кабеля, его малых размеров и высокой стойкости к вибрациям и механическим ударам, возможно широкое использование его как внутри помещений, так и снаружи объектов или по периметру территории.

Волоконно-оптическая система охраны "Сова" смонтирована и успешно работает на многих объектах Москвы, России и за рубежом.

Конструктивно извещатель TCO "COBA" выполнен в виде двух функционально законченных герметичных блоков (УПД = OU+УВ и УПР = ПФ+БПр), которые соединяются между собой многомодовым волоконно-оптическим кабелем - распределенным чувствительным элемен-

Распределённый чувствительный элемент(оптический кабель) смонтированный на колючую проволоку "Егоза" и на тонкостенных панелях ангаров.

том (РЧЭ). Лазерное излучение вводится в РЧЭ и затем поступает на оптический вход УПР для обработки и контроля. При механическом воздействии на РЧЭ, превышающем установленный порог, или его обрыве УПР формирует сигнал тревоги размыканием электрической цели.

УПД содержит в своем составе: полупроводниковый лазерный излучатель, схему накачки и стабилизации выходной оптической мощности, устройство диагностического контроля, индикатор наличия питающего напряжения "Питание", индикатор "Контроль". Устройство диагностического контроля формирует сигнал потенциального отказа лазерного излучателя в конце срока службы и подает его на вход индикатора "Контроль".

УПР содержит в своем составе: фото преобразователь, совмещенный со схемой обработки сигнала, стабилизатор входного питающего напряжения, индикатор "Питание", индикатор "Контроль", индикатор "Тревога", реле РЭС64А. При установке извещателя в режим "Порог" индикатор "Контроль" выключается, а индикатор "Тревога" включается.

В качестве РЧЭ может быть использован специальный многомодовый одножильный волоконно-оптический кабель (BOK) или оптическое волокно со ступенчатым изменением показателя преломления, числовой апертурой $2 \pm 0,2$ и диаметром световедущей жилы (50 ± 3) мкм.

Требования устойчивости РЧЭ к внешним воздействующим факторам определяются в зависимости от условий конкретного применения: непосредственно на ограде, тонкостенных панелях или под грунтом.

РЧЭ с двух сторон должен быть оконцован кабельными частями световодного разъемного соединителя. Кабельная часть соединителя, сочленяемая с УПД и УПР, должна удовлетворять следующим требованиям:

Диаметр световедущей жилы	(50 ± 3) мкм;
Диаметр наконечника	(2,5 ± 0,04) мм;
Отклонение диаметров световедущей жилы и наконечника, не более	5 мкм.
Допустимое затухание между УПД и УПР, вносимое РЧЭ, не должно превышать 5 дБ.	

В современных сложных условиях, в которых оказалась российская наука и промышленность из-за развала общего экономического пространства, ассоциация Еврокабель в лице научно-производственного предприятия "Альт-Свет" продолжают свои исследования, начатые 15 лет назад. В 2005 г. завершены опытно-конструкторские работы, и налажен серийный выпуск современной в модульном исполнении волоконно-оптической системы охраны "Сова", предназначенной для предупреждения попыток несанкционированного доступа и устанавливаемой на элементы ограждения охраняемой территории, стены, перекрытия, стеклянные поверхности и другие конструктивные блоки зданий и сооружений. Извещатель пожаро-взрывобезопасен и может работать в условиях воздействия сильных электромагнитных полей.

ЗАКЛЮЧЕНИЕ

В данной работе рассмотрено применение интерференционных явлений для волоконно-оптических датчиков физических величин, в частности, для регистрации внешнего воздействия на оптический кабель. Теоретически рассмотрены характеристики спекл-структур,

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТСО "СОВА"

Длина стандартного чувствительного элемента (РЧЭ), м. 500 Примечание: Параметр обеспечивается при условии затухания оптической мощности в РЧЭ не более 10 дБ/км на длине волны изпучения (0.76 - 0.88) мкм.

При использовании РЧЭ с меньшим затуханием его длин	на может
быть пропорционально увеличена до 1700 м.	
Ток потребления устройства	
передающего (УПД), мА, не более	200
Ток потребления устройства	
приемного (УПР), мА, не более	100
Время разомкнутого состояния	
контактов УПР, мс, не менее	100
Постоянныи коммутируемыи ток	
контактов УПР при напряжении	
до 30В (180 В), А, не более	0,1 (0,3)
Число коммутационных циклов	
контактов УПР при активной нагрузке	107 (107)
и напряжении до 30 в (180 в), не облее	10' (10')
диапазон регулировки чувствительности	20
схемы оораоотки сигнала УПР, дь, не менее	20
Рабочими условиями эксплуатации извещателя явля	
а) повышенная температура среды	$45 \pm 3^{\circ}$ C
	$(40 \pm 3^{\circ}C)$
В) относительная влажность воздуха тоо ± 5% при	25 ± 3 C
предельными условиями эксплуатации извещателя	
	60 ± 320
а) повышенная температура среды б) пониженная температура среды минус	$(50 \pm 3^{\circ}C)$
в) относительная влажность возлуха 100 + 3% при	$30 \pm 3^{\circ}C$
Извешатель в упаковке выдерживает при транспорт	
а) возлействие 1 500 уларов с ускорением 30 м/с2.	провкс.
лительность лействия уларного ускорения 1-3 м/	e:
б) температуру среды от - 50 до +50°С:	
в) относительная влажность воздуха 95 ± 3% при 35 ± 3°С.	
Электропитание извещателя осуществляется от источника	

Электропитание извещателя осуществляется от источника постоянного тока с допустимыми параметрами: напряжение 12 ± 1,2, пульсации напряжения не более 100 мВ (эффективное значение) Средняя наработка на отказ в дежурном режиме не менее 15 000ч.

Средний срок службы - 10 лет. Масса УПД, УПР - не более 900 гр.

сформированных когерентным освещением неоднородностей, возникших под влиянием внешнего воздействия на оптический кабель. Проведен анализ условий эффективной регистрации сигнала и его декодирование. Получены рекомендации по практическому использованию интерференционных явлений в оптических кабелях. Выводы подтверждены экспериментально. Разработана волоконно-оптическая система охраны периметра территории.

К преимуществам волоконно-оптических датчиков можно отнести их невосприимчивость к воздействию электромагнитных и радиочастотных помех, а также грозовых разрядов. Сенсорные оптические кабели не излучают электромагнитной энергии, пожаровзрывобезопасны и их трудно обнаружить.

СПИСОК ЛИТЕРАТУРЫ:

- Гораздовский Т.Я., Горбачев О.В., Жилинский А.П. Модель реоменной структуры в волоконных световодах, как первопричина нелинейных оптических эффектов // Сб. научных трудов Всесоюзной конф. "Повышение эффективности средств обработки информации на базе математического и машинного моделирования". - Тамбов. 1989. - С.215 - 217
- Горбачев О.В. и др. Нелинейные эффекты при работе волоконно-оптических модуляторов // Письма в "Журн. Техн. физики".- 1989, т. 15, в. 1. - С. 63-66.
- 3. Берикашвили В.Ш, Горбачев О.В., Жилинский А.П. Измерение модового поля в одномодовых световодах методом сканирования // Электросвязь. 1988. №8. С. 21-24.